Specific regulation of PRMT1 expression by PIAS1 and RKIP in BEAS-2B epithelia cells and HFL-1 fibroblasts in lung inflammation

نویسندگان

  • Li Liu
  • Qingzhu Sun
  • Rujuan Bao
  • Michael Roth
  • Bo Zhong
  • Xi Lan
  • Jia Tian
  • Qirui He
  • Dongmin Li
  • Jian Sun
  • Xudong Yang
  • Shemin Lu
چکیده

Protein arginine methyltransferase 1 (PRMT1) catalyzes methylation of histones and other cellular proteins, and thus regulates gene transcription and protein activity. In antigen-induced pulmonary inflammation (AIPI) PRMT1 was up-regulated in the epithelium, while in chronic AIPI, increased PRMT1 shifted to fibroblasts. In this study we investigated the cell type specific regulatory mechanism of PRMT1. Epithelial cells and fibroblasts were stimulated with IL-4 or IL-1β. Gene and protein expression were determined by RT-qPCR, immunohistochemistry staining and Western blotting. Signaling pathway inhibitors, siRNAs and shRNA were used to determine the regulatory mechanism of PRMT1. The results showed that IL-4 up-regulated PRMT1 through STAT6 signaling in epithelial cells, while IL-1β regulated PRMT1 through NF-κB in fibroblasts. The NF-kB inhibitor protein RKIP was highly expressed in epithelial cells and blocked IL-1β induced PRMT1 up-regulation; while the STAT6 inhibitor protein PIAS1 was expressed in fibroblasts and suppressed IL-4 induced PRMT1 expression. Furthermore, IL-4 stimulated epithelial cells to release IL-1β which up-regulated PRMT1 expression in fibroblasts. In conclusion, the inhibitor proteins RKIP and PIAS1 regulated the cell type and signaling specific expression of PRMT1. Thus PRMT1 expression in structural lung cells in asthma can be considered as potential target for new therapeutic intervention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bleomycin stimulates lung fibroblast and epithelial cell lines to release eosinophil chemotactic activity.

The presence of eosinophils in the lungs of patients with pulmonary fibrosis correlates with poor prognosis or resistance to therapy. Furthermore, eosinophils localize to areas undergoing active fibrosis. It was hypothesized that a human lung fibroblast (HFL-1) and a human lung epithelial cell line (BEAS-2B) might release eosinophil chemotactic activity (ECA) in response to bleomycin, a chemoth...

متن کامل

Up-regulation of cysteinyl leukotriene 1 receptor by IL-13 enables human lung fibroblasts to respond to leukotriene C4 and produce eotaxin.

Cysteinyl leukotrienes (CysLTs) play an important role in eosinophilic airway inflammation. In addition to their direct chemotactic effects on eosinophils, indirect effects have been reported. Eotaxin is a potent eosinophil-specific chemotactic factor produced mainly by fibroblasts. We investigated whether CysLTs augment eosinophilic inflammation via eotaxin production by fibroblasts. Leukotrie...

متن کامل

Macrophages Facilitate Coal Tar Pitch Extract-Induced Tumorigenic Transformation of Human Bronchial Epithelial Cells Mediated by NF-κB

OBJECTIVE Chronic respiratory inflammation has been associated with lung cancer. Tumor-associated macrophages (TAMs) play a critical role in the formation of inflammation microenvironment. We sought to characterize the role of TAMs in coal tar pitch extract (CTPE)-induced tumorigenic transformation of human bronchial epithelial cells and the underlying mechanisms. METHODS The expression of TA...

متن کامل

Modulation of cellular transport characteristics of the human lung alveolar epithelia

Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...

متن کامل

Retraction. PRMT1-mediated arginine methylation of PIAS1 regulates STAT1 signaling.

To elucidate the function of the transcriptional coregulator PRMT1 (protein arginine methyltranferase 1) in interferon (IFN) signaling, we investigated the expression of STAT1 (signal transducer and activator of transcription) target genes in PRMT1-depleted cells. We show here that PRMT1 represses a subset of IFNgamma-inducible STAT1 target genes in a methyltransferase-dependent manner. These g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016